Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Explore les propriétés spectrales des systèmes illimités et bornés en utilisant les méthodes de Fourier et souligne l'importance de choisir la représentation correcte pour différentes conditions aux limites.
Explore les transformées de Fourier, y compris les propriétés, la convolution, le théorème de Parseval et la densité spectrale d'énergie pour les fonctions non périodiques.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Couvre la théorie des méthodes numériques pour l'estimation des fréquences sur les signaux déterministes, y compris la série et la transformation de Fourier, la transformation de Fourier discret et le théorème d'échantillonnage.
Explore la résolution des équations différentielles à l'aide de données périodiques à l'aide de la série de Fourier et approfondit l'équation de la chaleur dans R.