Applications et systèmes intensifs de données: Aperçu
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les techniques de nettoyage axées sur les requêtes pour les contraintes de déni dans les bases de données, en mettant l'accent sur les stratégies de relaxation et l'efficacité de nettoyage.
Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Explore les techniques de manipulation des données, la détection des erreurs, les dépendances fonctionnelles, les contraintes de déni et la temporalité des données.
Explore les progrès de la science des données, en mettant l'accent sur des idées rapides, la variété des données et les systèmes de données intelligents en temps réel.
Couvre la présentation du module des utilisateurs clés de l'équipement et son accent sur la planification, le chargement des données et les essais d'intégration.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Explore la production, le stockage, le traitement et les dimensions de Big Data, ainsi que les défis en matière d'analyse de données, d'élasticité de l'informatique en nuage et de sécurité.
Explore les changements matériels, l'optimisation des requêtes, la répartition de la charge de travail, et des stratégies efficaces pour le milieu universitaire et l'équilibre entre vie professionnelle et vie privée.
Introduit des concepts de modélisation de données, l'utilisation de SQL et des applications de bibliothèque Pandas pour un traitement efficace des données.