Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les propriétés géométriques des paraboles hyperboliques et des hyperboloïdes, en se concentrant sur leurs caractéristiques de construction et de courbure.
Discute des principes géométriques en architecture, en se concentrant sur les hyperboloïdes et les paraboloïdes et leurs applications dans la conception et l'ingénierie structurelle.
Explore l'analyse et la construction des surfaces gothiques, en mettant l'accent sur les détails géométriques complexes et les techniques utilisées dans la conception architecturale.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore la dérivée des longueurs de courbe, des déformations à extrémité fixe, des géodésiques, des typologies de points de surface et de la paramétrisation de sphère.
Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.