Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre la méthode Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings pour générer des échantillons à partir d'une distribution de probabilité cible.