Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les intervalles de confiance, les tests d'hypothèse, les erreurs standard, les modèles statistiques, la probabilité, l'inférence bayésienne, la courbe ROC, la statistique Pearson, la bonté des tests d'ajustement et la puissance des tests.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
Introduit des statistiques descriptives, des tests d'hypothèses, des valeurs p et des intervalles de confiance, soulignant leur importance dans l'analyse des données.