Explore la conservation de l'énergie dans les systèmes hamiltoniens, l'intégration numérique, les choix de pas temporels et les algorithmes de contraintes dans les simulations de dynamique moléculaire.
Explore l'optimisation avec des contraintes en utilisant les conditions KKT et l'algorithme de point intérieur sur deux exemples de programmation quadratique.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.