Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
Explore les stratégies d'apprentissage en robotique, y compris les systèmes de récompense, l'utilisation des luminaires et la généralisation de la formation, de la simulation aux applications du monde réel.
Explore le transfert des principes d'apprentissage humain aux robots, en mettant l'accent sur la manipulation de l'apprentissage des compétences et la planification des tâches.
Introduit des méthodes de pointe dans l'optimisation et la simulation, couvrant des sujets tels que l'analyse statistique, la réduction de la variance et les projets de simulation.