Apprentissage sans supervision : regroupement et réduction de dimensionnalité
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute des solutions pour l'alignement des activités et des technologies de l'information et de l'importance de mettre les activités à jour en fonction des modèles de TI.
Couvre les concepts clés de l'analyse des composantes principales (APC) et ses applications pratiques dans la réduction de dimensionnalité des données et l'extraction des caractéristiques.
Couvre les concepts clés de l'APC, y compris la réduction de la dimensionnalité des données et des fonctions d'extraction, avec des exercices pratiques.
Couvre l'essentiel de la science des données, y compris le traitement, la visualisation et l'analyse des données, en mettant l'accent sur les compétences pratiques et l'engagement actif.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.
Couvre les méthodes du noyau dans l'apprentissage machine avancé, se concentrant sur les noyaux, l'apprentissage non supervisé, et les algorithmes de classification.