Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Examine les méthodes de regroupement pour la partition des données en classes significatives lorsque l'étiquetage est inconnu, couvrant les moyennes K, les mesures de dissimilarité et le regroupement hiérarchique.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Couvre les principes et les méthodes de regroupement dans l'apprentissage automatique, y compris les mesures de similarité, la projection de l'APC, les moyennes K et l'impact de l'initialisation.
Explore la prise de décision dans l'incertitude, en se concentrant sur la thèse de doctorat posthume de Kilian Schindler sur l'optimisation stochastique évolutive et la réduction de scénarios.