Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore l'influence de la complexité sur les propriétés ergonomiques des systèmes symboliques, présentant le théorème Curtis-Hedlund-Lyndon et les constructions de sous-postes minimaux.
Explore la limitation de la distribution dans les chaînes de Markov et les implications de l'ergodicité et de l'apériodicité sur les distributions stationnaires.
Explore le couplage des chaînes de Markov et la preuve du théorème ergodique, en mettant l'accent sur la convergence des distributions et les propriétés de la chaîne.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.