Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur l'application de l'apprentissage automatique à l'amélioration de la documentation relative aux droits de l'homme et aux activités de plaidoyer à l'intention d'organisations telles que HURIDOCS.
Explore les protocoles d'évaluation dans l'apprentissage automatique, y compris le rappel, la précision, la précision et la spécificité, avec des exemples du monde réel comme les tests COVID-19.
Explore les sources d'injustice dans l'apprentissage automatique, l'importance des mesures d'équité et l'évaluation des prédictions des modèles à l'aide de diverses mesures d'équité.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Couvre le concept de biométrie, le processus d'inscription et de vérification de la biométrie, et l'importance d'équilibrer les faux positifs et les faux négatifs.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.