Génération du langage naturel: Techniques de décodage et défis de formation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Explore la génération de langage naturel, en mettant l'accent sur les systèmes de construction qui produisent un texte cohérent pour la consommation humaine à l'aide de diverses méthodes de décodage et de mesures d'évaluation.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.