Couvre la modélisation de la dépendance temporelle dans les séries chronologiques, y compris la tendance, les composantes périodiques, la régression, la stationnarité, l'autocorrélation et les essais d'indépendance.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Explore les modèles de séries chronologiques, en mettant l'accent sur les processus autorégressifs, y compris le bruit blanc, AR(1) et MA(1), entre autres.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.