Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.
Explore l'intégrale de Lebesgue, où fonctionne les partitions auto-sélectionnées, conduisant à des ensembles mesurables et des complexités non mesurables.
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.