Introduit une régression linéaire et logistique, couvrant les modèles paramétriques, la prédiction multi-sorties, la non-linéarité, la descente de gradient et les applications de classification.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les modèles linéaires, la régression logistique, la descente en gradient et la régression logistique multi-classes avec des applications pratiques et des exemples.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.