Modèles de langage: De la théorie à l'informatique
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les progrès de l'IA générative et de l'apprentissage par renforcement, en se concentrant sur leurs applications, leur sécurité et leurs futures orientations de recherche.
Explore la compression du modèle de deuxième ordre pour les réseaux neuronaux profonds massifs, montrant les techniques de compression et leur impact sur la précision du modèle.
Explore l'influence de la linguistique computationnelle sur les architectures d'apprentissage profond, couvrant les formalismes grammaticaux, le connexionnisme, la liaison variable et les orientations futures.
Explore un cadre unifié pour la compréhension et l'évaluation de modèles de séquences génériques d'ADN/ARN ou de protéines, couvrant des sujets tels que la coévolution, la conservation et différents modèles tels que GREMLIN et BERT.
Explique l'architecture complète des Transformateurs et le mécanisme d'auto-attention, en soulignant le changement de paradigme vers l'utilisation de modèles complètement préformés.
Explore le mécanisme d'attention dans la traduction automatique, en s'attaquant au problème du goulot d'étranglement et en améliorant considérablement les performances NMT.