Explore les conditions d'optimalité nécessaires et suffisantes pour les minima locaux sur les collecteurs, en mettant l'accent sur les points critiques de deuxième ordre.
Explore l'importance de différencier les champs vectoriels et la méthodologie appropriée pour y parvenir, en soulignant l'importance d'aller au-delà du premier ordre.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Introduit des champs vectoriels différenciés le long de courbes sur des collecteurs avec des connexions et l'opérateur unique satisfaisant des propriétés spécifiques.