Couvre les opérations et les constructions fondamentales en géométrie euclidienne, en se concentrant sur les interprétations algébriques et les constructions de règle et de compas.
Explore les transformations géométriques et les invariances modernes, en mettant l'accent sur la géométrie projective et les développements historiques.
Explore les opérations géométriques comme l'inversion, les cercles orthogonaux, et la duplication cube, mettant l'accent sur la signification historique et les méthodes de construction modernes.
Explore les géométries non euclides, hyperboliques et sphériques, défiant la géométrie traditionnelle euclidienne avec des implications pour les mathématiques modernes.
Présente des éléments euclidiens, explore l'unicité de l'infini, des lignes parallèles et différentes géométries comme l'euclidienne, hyperbolique et sphérique.