Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Explore la théorie de la distribution des estimateurs des moindres carrés dans un modèle linéaire gaussien, en mettant l'accent sur la construction des intervalles de précision et de confiance.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Couvre les principes fondamentaux des équations différentielles, leurs propriétés et les méthodes pour trouver des solutions à travers divers exemples.
Explore l'analyse des données bivariées dans les biostatistiques appliquées, couvrant la corrélation, la régression, la sélection des modèles et le diagnostic.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.