Couvre les fondements de la théorie des groupes en physique, en se concentrant sur les symétries et les transformations laissant les équations physiques inchangées.
Explore la théorie des groupes en physique quantique, en mettant l'accent sur les représentations réductibles et irréductibles, les lois de conservation et les propriétés de groupe.
Couvre le produit tenseur des représentations, des symétries d'un triangle, des représentations irréductibles et des applications pratiques en physique.
Explore les applications de la symétrie et de la théorie des groupes en chimie, couvrant les représentations matricielles, les modes normaux et les oscillateurs harmoniques.
Explore les représentations de la symétrie C3v, des tables de caractères, des symboles Mulliken et des applications de la théorie des groupes dans les fonctions propres.
Couvre la construction de produits tenseurs de représentations, la recherche de bases correctes pour les matrices et l'importance de la symétrie dans les problèmes de physique.