Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Couvre les calculs en coordonnées pour les vecteurs, y compris les bases, le produit scalaire et les déterminants, avec des interprétations géométriques et des exemples.