Working directoryIn computing, the working directory of a process is a of a , if any, dynamically associated with each process. It is sometimes called the current working directory (CWD), e.g. the BSD getcwd function, or just current directory. When the process refers to a file using a simple file name or relative path (as opposed to a file designated by a full path from a root directory), the reference is interpreted relative to the working directory of the process. So for example a process with working directory /rabbit-shoes that asks to create the file foo.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Facteur d'impactUn facteur d'impact ou FI (en anglais, impact factor ou IF, journal impact factor ou JIF) est un indicateur qui estime indirectement la visibilité d'une revue scientifique. Pour une année donnée, le FI d'une revue est égal à la moyenne des nombres de citations des articles de cette revue publiés durant les deux années précédentes. Ce facteur d'impact, qui mesure une certaine visibilité, est considéré par certains gestionnaires de la recherche et certains chercheurs comme un critère pertinent : une revue avec un FI élevé serait ainsi considérée comme plus importante (parce que plus visible : plus lue et plus citée) qu'une revue avec un FI faible.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Méthode de la puissance itéréeEn mathématiques, la méthode de la puissance itérée ou méthode des puissances est un algorithme pour calculer la valeur propre dominante d'une matrice. Bien que cet algorithme soit simple à mettre en œuvre et populaire, il ne converge pas très vite. Étant donné une matrice A, on cherche une valeur propre de plus grand module et un vecteur propre associé. Le calcul de valeurs propres n'est en général pas possible directement (avec une formule close) : on utilise alors des méthodes itératives, et la méthode des puissances est la plus simple d'entre elles.
Modèle d'équations structurellesLa modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Interface systèmeUne interface système ou coque logicielle (shell en anglais) est une couche logicielle qui fournit l'interface utilisateur d'un système d'exploitation. Il correspond à la couche la plus externe de ce dernier. L'interface système est utilisée comme diminutif de l'interface utilisateur du système d'exploitation. Le terme anglais « en » vient à l'origine de la terminologie employée avec les premiers systèmes d'exploitation de type Unix où il avait le sens plus spécifique de shell Unix.