Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Additive Schwarz methodIn mathematics, the additive Schwarz method, named after Hermann Schwarz, solves a boundary value problem for a partial differential equation approximately by splitting it into boundary value problems on smaller domains and adding the results. Partial differential equations (PDEs) are used in all sciences to model phenomena. For the purpose of exposition, we give an example physical problem and the accompanying boundary value problem (BVP). Even if the reader is unfamiliar with the notation, the purpose is merely to show what a BVP looks like when written down.
Fonction itéréeEn mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Simulation des grandes structures de la turbulenceLa simulation des grandes structures de la turbulence (SGS ou en anglais LES pour Large Eddy Simulation) est une méthode utilisée en modélisation de la turbulence. Elle consiste à filtrer les petites échelles qui sont modélisées et en calculant directement les grandes échelles de la cascade turbulente. Cette méthode a été introduite par Joseph Smagorinsky en 1963 et utilisée pour la première fois par James W. Deardoff en 1970. Elle permet de calculer un écoulement turbulent en capturant les grandes échelles pour un coût raisonnable.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.