Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Matrice binaireUne matrice binaire est une matrice dont les coefficients sont soit 0, soit 1. En général ces coefficients sont les nombres de l'algèbre de Boole dans laquelle on appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {VRAI, FAUX}. Cet ensemble est aussi noté B = {1, 0} ou B = {⊤, ⊥}. On privilégie souvent la notation B = {1, 0}. Quand on programme des algorithmes utilisant ces matrices, la notation {VRAI, FAUX} peut coexister avec la notation {1, 0} car de nombreux langages acceptent ce polymorphisme.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Factorisation de DixonEn arithmétique modulaire, la méthode de factorisation de Dixon (aussi connue comme l'algorithme de Dixon) est un algorithme de décomposition en produit de facteurs premiers à but général. Le crible quadratique est une modification de l'idée de base utilisée dans la méthode de Dixon. L'algorithme a été proposé par John D. Dixon, un mathématicien de l'université Carleton, et publié en 1981. La méthode de Dixon est basée sur la recherche d'une congruence de carrés.
Calcul formelLe calcul formel, ou parfois calcul symbolique, est le domaine des mathématiques et de l’informatique qui s’intéresse aux algorithmes opérant sur des objets de nature mathématique par le biais de représentations finies et exactes. Ainsi, un nombre entier est représenté de manière finie et exacte par la suite des chiffres de son écriture en base 2. Étant donné les représentations de deux nombres entiers, le calcul formel se pose par exemple la question de calculer celle de leur produit.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Formal schemeIn mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.
Network address translationEn réseau informatique, on dit qu'un routeur fait du network address translation (NAT, « traduction d'adresse réseau » ou parfois « translation d'adresse réseau ») lorsqu'il fait correspondre des adresses IP à d'autres adresses IP. En particulier, un cas courant est de permettre à des machines disposant d'adresses privées qui font partie d'un intranet et ne sont ni uniques ni routables à l'échelle d'Internet, de communiquer avec le reste d'Internet en utilisant vers l'extérieur des adresses externes publiques, uniques et routables.
Multicast addressA multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer (layer 2 in the OSI model), such as Ethernet multicast, and at the internet layer (layer 3 for OSI) for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast. IPv4 multicast addresses are defined by the most-significant bit pattern of 1110.
Matrice tridiagonaleEn mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice dont tous les coefficients qui ne sont ni sur la diagonale principale, ni sur la diagonale juste au-dessus, ni sur la diagonale juste en dessous, sont nuls. Par exemple, la matrice suivante est tridiagonale : Une matrice , dont on note les coefficients a, est dite tridiagonale si : a = 0 pour tous (i, j) tels que i – j > 1, autrement dit si c'est une matrice de Hessenberg à la fois supérieure et inférieure.