Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Analytic–synthetic distinctionThe analytic–synthetic distinction is a semantic distinction used primarily in philosophy to distinguish between propositions (in particular, statements that are affirmative subject–predicate judgments) that are of two types: analytic propositions and synthetic propositions. Analytic propositions are true or not true solely by virtue of their meaning, whereas synthetic propositions' truth, if any, derives from how their meaning relates to the world.
Foncteur dérivéEn mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
Critique de la raison pureLa Critique de la raison pure, en allemand, Kritik der reinen Vernunft, est une œuvre d'Emmanuel Kant, publiée en 1781 et remaniée en 1787. Elle est considérée comme son œuvre majeure, la plus lue, peut-être la plus difficile, la plus commentée, la plus étudiée et la plus influente. Incomprise à son origine, elle donne rapidement prise à une littérature de controverse. Ce livre examine et confronte les possibilités et limites de la raison et de la métaphysique dans l'objectif d'.
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Fonction elliptiquevignette|Fonctions elliptiques lemniscates et ellipse. En mathématiques, et plus particulièrement en analyse complexe, une fonction elliptique est, grossièrement parlant, une fonction définie sur le plan complexe qui est doublement périodique (périodique dans deux directions). Elle peut être vue comme analogue à une fonction trigonométrique (qui a une seule période).
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.