Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Chloride channelChloride channels are a superfamily of poorly understood ion channels specific for chloride. These channels may conduct many different ions, but are named for chloride because its concentration in vivo is much higher than other anions. Several families of voltage-gated channels and ligand-gated channels (e.g., the CaCC families) have been characterized in humans. Voltage-gated chloride channels perform numerous crucial physiological and cellular functions, such as controlling pH, volume homeostasis, transporting organic solutes, regulating cell migration, proliferation, and differentiation.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Canal tensiodépendantLes canaux tensiodépendants sont des canaux ioniques spécialisés qui s'ouvrent ou se ferment en réponse à une variation du potentiel de membrane. Les termes canal dépendant du voltage ou canal voltage dépendant, inspirés de la terminologie anglo-saxonne (voltage-dependant calcium channel), sont très souvent utilisés. L'adjectif tensiodépendant, proposé si récemment qu'il n'est même pas accessible par l'interrogation de NGramViewer (corpus de 2019), contrairement à dépendant du voltage ou dépendant du potentiel, est regrettable : en effet, il induit une confusion avec des canaux sensibles à la tension pris dans le sens d'étirement (stretch operated caclum channels).
Cohérence (physique)La cohérence en physique est l'ensemble des propriétés de corrélation d'un système ondulatoire. Son sens initial était la mesure de la capacité d'onde(s) à donner naissances à des interférences — du fait de l'existence d'une relation de phase définie — mais il s'est élargi. On peut parler de cohérence entre 2 ondes, entre les valeurs d'une même onde à deux instants différents (cohérence temporelle) ou entre les valeurs d'une même onde à deux endroits différents (cohérence spatiale).
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Matching pursuitMatching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum.