In set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.
Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory.
In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself. For any set , the set (constructed using pairing) necessarily contains an element disjoint from , by regularity. Because its only element is , it must be the case that is disjoint from , and therefore that does not contain itself. Because a universal set would necessarily contain itself, it cannot exist under these axioms.
Russell's paradox
Russell's paradox prevents the existence of a universal set in set theories that include Zermelo's axiom of comprehension.
This axiom states that, for any formula and any set , there exists a set
that contains exactly those elements of that satisfy .
As a consequence of this axiom, to every set there corresponds another set consisting of the elements of that do not contain themselves. cannot contain itself, because it consists only of sets that do not contain themselves. It cannot be a member of , because if it were it would be included as a member of itself, by its definition, contradicting the fact that it cannot contain itself. Therefore, every set is non-universal: there exists a set that it does not contain. This indeed holds even with predicative comprehension and over intuitionistic logic.
Cantor's theorem
Another difficulty with the idea of a universal set concerns the power set of the set of all sets. Because this power set is a set of sets, it would necessarily be a subset of the set of all sets, provided that both exist. However, this conflicts with Cantor's theorem that the power set of any set (whether infinite or not) always has strictly higher cardinality than the set itself.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Les couvertures établissent les principes fondamentaux, les opérations et la cardinalité, y compris la notation, l'égalité, les sous-ensembles et les opérations comme l'union et l'intersection.
En logique mathématique, New Foundations (NF) est une théorie des ensembles axiomatique introduite par Willard Van Orman Quine en 1937, dans un article intitulé « New Foundations for Mathematical Logic », et qui a connu un certain nombre de variantes. Pour éviter le paradoxe de Russell, le principe de compréhension est restreint aux formules stratifiées, une restriction inspirée de la théorie des types, mais où la notion de type est implicite.
Le schéma d'axiomes de compréhension, ou schéma d'axiomes de séparation, est un schéma d'axiomes de la théorie des ensembles introduit par Zermelo dans sa théorie des ensembles, souvent notée Z. On dit souvent en abrégé schéma de compréhension ou schéma de séparation. La théorie des classes permet de l'exprimer comme un seul axiome. Étant donné un ensemble A et une propriété P exprimée dans le langage de la théorie des ensembles, il affirme l'existence de l'ensemble B des éléments de A vérifiant la propriété P.
L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
In this article, we propose a dynamical system to avoid obstacles which are star shaped and simultaneously converge to a goal. The convergence is almost-global in a domain and the stationary points are identified explicitly. Our approach is based on the id ...
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...