ViscositéLa viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Équation de bilan de la quantité de mouvementEn mécanique des fluides, l'équation de bilan de la quantité de mouvement découle du principe fondamental de la dynamique appliqué à un fluide. Avec l'équation de conservation de la masse et l'équation de la chaleur elle fait partie des équations de Navier-Stokes.
Conservation de la natureLa conservation de la nature consiste en la protection des populations d'espèces animales et végétales, ainsi que la conservation de l'intégrité écologique de leurs habitats naturels ou de substitution (comme les haies, carrières, terrils, mares ou autres habitats façonnés par les humains). Son objectif est de maintenir les écosystèmes dans un bon état de conservation et de prévenir ou de corriger les dégradations qu'ils pourraient subir. Chronologie de l'écologisme L'écologisme a des racines anciennes et plutôt anglo-saxonnes, qui ont évolué à la fin du .
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Biologie de la conservationLa biologie de la conservation (ou écologie de la conservation) est une discipline traitant des questions de perte, maintien ou restauration de biodiversité. Robert Barbault la présente comme une discipline de gestion de crise ; elle vise à identifier les populations en déclin ou relictuelles et les espèces en danger, pour en déterminer les causes de leur déclin, proposer, tester et valider des moyens de remédier à ce déclin (éventuellement provisoirement ex situ).
Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Conservation de la charge électriqueLa conservation de la charge électrique est un principe physique. Il exprime que la charge électrique d'un système isolé est un invariant. La charge électrique ne peut donc être qu'échangée avec un autre système mais ni créée ni annihilée. On dit qu'il s'agit d'une grandeur conservative. Ainsi, lors d'une réaction chimique, la somme totale des charges des espèces mises en jeu est conservée entre les réactifs et les produits. Lors d'une collision entre atomes, ions ou molécules, d'une désintégration radioactive, ou d'un échange énergie-matière, il en est de même.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
HydrostatiqueL'hydrostatique, ou statique des fluides, est l'étude des fluides immobiles. Fondée par Archimède, c'est un cas de la mécanique des fluides riche d'enseignements. La pression d'un fluide est liée aux mouvements et aux chocs que les particules qu'il contient exercent sur les parois d'une enceinte. Que ce soit un liquide ou l'air atmosphérique, les chocs exercent des forces pressantes sur les parois d'une enceinte. Le traité d'hydrostatique de Simon Stevin a paru d'abord en hollandais à Leyde en 1586 sous le titre De Beghinselen des Waterwichts.