K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Prédiction de la structure des protéinesLa prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Ingénierie des structuresL'ingénierie des structures est un domaine de l'ingénierie et plus particulièrement du génie civil, traitant de la stabilité des constructions (conception et de l'analyse des structures). Une structure est soumise à différentes actions, permanentes ou variables dans le temps, statiques ou dynamiques, de nature mécanique ou thermique, et sa conception vise à satisfaire certains critères vis-à-vis de ces actions : Sécurité : sa résistance, son équilibre et sa stabilité doivent être assurés avec une probabilité choisie ; Performance : son fonctionnement et le confort associés doivent être garantis pour une durée suffisante ; Durabilité : la dégradation de la structure dans le temps doit être limitée et maîtrisée pour satisfaire les deux premiers critères.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Famille de protéinesUne famille de protéines est un ensemble de protéines généralement codées par une famille de gènes. Les familles de protéines regroupent des protéines ayant des caractéristiques proches en termes de structure, de fonction enzymatique et de fonction cellulaire. Le terme famille de protéines peut être employé pour décrire un groupe de protéines non apparentées mais partageant une fonction commune, par exemple, les protéines de choc thermique, la désignation correcte serait ici de parler de classe de protéines.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Structure des protéinesLa structure des protéines est la composition en acides aminés et la conformation en trois dimensions des protéines. Elle décrit la position relative des différents atomes qui composent une protéine donnée. Les protéines sont des macromolécules de la cellule, dont elles constituent la « boîte à outils », lui permettant de digérer sa nourriture, produire son énergie, de fabriquer ses constituants, de se déplacer, etc. Elles se composent d'un enchaînement linéaire d'acides aminés liés par des liaisons peptidiques.
Biologie structuralevignette|droite|Structure 3D de la myoglobine du grand cachalot (PDB ID 1MBO), la première protéine dont la structure a été résolue par cristallographie aux rayons X par John Kendrew et al. en 1958. La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules biologiques, principalement les protéines et les acides nucléiques.