Rate equationIn chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.
Reaction rateThe reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second.
Loi d'Arrheniusvignette|Constante de vitesse en fonction de la température. En cinétique chimique, la loi d'Arrhenius établit la dépendance de la vitesse d'une réaction chimique à la température. Cette loi est énoncée par Svante A. Arrhenius en 1889 dans son article intitulé . Cependant, elle n'est universellement acceptée par ses contemporains que vers 1910. La loi d'Arrhenius est vérifiée expérimentalement par un grand nombre de réactions chimiques ; toutefois, toutes les réactions ne suivent pas cette loi, comme les réactions enzymatiques.
Équation d'EyringL'équation d'Eyring, aussi appelée équation d'Eyring-Polanyi en cinétique chimique, relie la vitesse de réaction à la température. Elle a été établie quasi-simultanément en 1935 par Henry Eyring, M.G. Evans et Michael Polanyi. Cette équation découle de la théorie de l'état de transition (ou théorie du complexe activé) et correspond, contrairement à la loi d'Arrhenius, à un modèle théorique basé sur la thermodynamique statistique.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Équation chimiqueUne équation chimique est un écrit symbolique qui modélise la transformation de molécules et d'atomes lors d'une réaction chimique. Elle peut se présenter sous plusieurs formes : réactifs → produits (réaction chimique irréversible ; la forme la plus courante dans les livres de chimie); la transformation n'est possible que dans un seul sens. réactifs → produits + énergie (réaction chimique irréversible) réactifs ⇌ produits + énergie (réaction réversible); la transformation directe est limitée par la transformation inverse, simultanée.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.