IdentifiantUn identifiant est une sorte de nom qui sert à identifier un objet précis dans un ensemble d'objets ; ou plus largement toute suite de caractères qui joue ce rôle-là. En principe, un identifiant devrait être unique pour chaque objet. En pratique (comme pour les noms de personnes ou de lieux) ce n'est pas toujours le cas, sauf s'il s'agit d'un ensemble d'identifiants défini par une norme technique. Un identifiant de métadonnée est un signe, une étiquette ou un jeton indépendant du langage, qui identifie de manière unique un objet au sein d'un schéma d'identification.
Distributed shared memoryIn computer science, distributed shared memory (DSM) is a form of memory architecture where physically separated memories can be addressed as a single shared address space. The term "shared" does not mean that there is a single centralized memory, but that the address space is shared—i.e., the same physical address on two processors refers to the same location in memory. Distributed global address space (DGAS), is a similar term for a wide class of software and hardware implementations, in which each node of a cluster has access to shared memory in addition to each node's private (i.
SemilatticeIn mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Band (algebra)In mathematics, a band (also called idempotent semigroup) is a semigroup in which every element is idempotent (in other words equal to its own square). Bands were first studied and named by . The lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands are specific subclasses of bands that lie near the bottom of this lattice and which are of particular interest; they are briefly described below.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
Propriété universelleEn mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels.
Théorie des typesEn mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Grappe de serveursOn parle de grappe de serveurs, de cluster, de groupement de serveurs ou de ferme de calcul (computer cluster en anglais) pour désigner des techniques consistant à regrouper plusieurs ordinateurs indépendants appelés nœuds (node en anglais), afin de permettre une gestion globale et de dépasser les limitations d'un ordinateur pour : augmenter la disponibilité ; faciliter la montée en charge ; permettre une répartition de la charge ; faciliter la gestion des ressources (processeur, mémoire vive, disques durs,