Compression de donnéesLa compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
Compression d'imageLa compression d'image est une application de la compression de données sur des . Cette compression a pour utilité de réduire la redondance des données d'une image afin de pouvoir l'emmagasiner sans occuper beaucoup d'espace ou la transmettre rapidement. La compression d'image peut être effectuée avec perte de données ou sans perte. La compression sans perte est souvent préférée là où la netteté des traits est primordiale : schémas, dessins techniques, icônes, bandes dessinées.
Algorithme de compression sans pertevignette|Comparaison de la compression d'image entre les formats JPG (à gauche) et PNG (à droite). PNG utilise une compression sans perte. On appelle algorithme de compression sans perte toute procédure de codage ayant pour objectif de représenter une certaine quantité d'information en utilisant ou en occupant un espace plus petit, permettant ainsi une reconstruction exacte des données d'origine. C'est-à-dire que la compression sans perte englobe les techniques permettant de générer un duplicata exact du flux de données d'entrée après un cycle de compression/expansion.
Compression fractaleLa compression fractale est une méthode de encore peu utilisée aujourd’hui. Elle repose sur la détection de la récurrence des motifs, et tend à éliminer la redondance d’informations dans l'image. C'est une méthode destructive puisque l'ensemble des données de départ ne se retrouve pas dans l'image finale. Il existe plusieurs méthodes (subdivision de triangles, Delaunay etc.) mais la compression par la méthode Jacquin est la plus connue.
Télévision à ultra-haute définitionthumb|300x300px|Logo digitaleurope (norme europe) La télévision à ultra-haute définition (TVUHD selon l'UIT, UHDTV en anglais) est un format numérique de vidéo dont la caractéristique principale est une comportant quatre fois, voire seize fois plus de pixels que la télévision à haute définition (HDTV). Aujourd'hui, ce format tend à se généraliser dans sa version TVUHD1. La variante TVUHD2 est quant à elle encore à l'état de développement, et devrait se démocratiser à l'horizon 2020.
Codage de HuffmanLe codage de Huffman est un algorithme de compression de données sans perte. Le codage de Huffman utilise un code à longueur variable pour représenter un symbole de la source (par exemple un caractère dans un fichier). Le code est déterminé à partir d'une estimation des probabilités d'apparition des symboles de source, un code court étant associé aux symboles de source les plus fréquents. Un code de Huffman est optimal au sens de la plus courte longueur pour un codage par symbole, et une distribution de probabilité connue.
Efficacité spectraleEn transmissions numériques, l'efficacité spectrale η se définit comme étant le rapport entre le débit binaire (en bit/s) et la bande passante (en Hz). Nous pouvons aussi dire que c'est le nombre de données binaires envoyés sur le canal de communication par ressource temps-fréquence (par accès au canal ou channel use). L'efficacité spectrale d'une modulation se définit par le paramètre : η = D/B et s'exprime en "bit par seconde et par hertz". La valeur D est le débit binaire (en bit/s) et B (en Hz) est la largeur de la bande occupée par le signal modulé.
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Codage entropiqueLe codage entropique (ou codage statistique à longueur variable) est une méthode de codage de source sans pertes, dont le but est de transformer la représentation d'une source de données pour sa compression ou sa transmission sur un canal de communication. Les principaux types de codage entropique sont le codage de Huffman et le codage arithmétique. Le codage entropique utilise des statistiques sur la source pour construire un code, c'est-à-dire une application qui associe à une partie de la source un mot de code, dont la longueur dépend des propriétés statistiques de la source.
Théorème du codage de sourceLe théorème du codage de source (ou premier théorème de Shannon, ou encore théorème de codage sans bruit) est un théorème en théorie de l'information, énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d'une source. Le théorème montre que l'on ne peut pas compresser une chaine de variables aléatoires i.i.d, quand la longueur de celle-ci tend vers l'infini, de telle sorte à ce que la longueur moyenne des codes des variables soit inférieure à l'entropie de la variable source.