Puits quantiqueUn puits quantique est une zone de l'espace dans laquelle le potentiel ressenti par une particule quantique atteint un minimum. Il s'agit d'un puits de potentiel dont les petites dimensions entraînent une différence entre les prédictions de la mécanique classique et celles de la mécanique quantique. L'équation de Schrödinger prévoit en effet que l'énergie de la particule évoluant dans un tel puits est quantifiée. L'étude de puits quantiques de forme variée (puits carré, puits harmonique, couplage entre deux puits voisins.
Boîte quantiqueUne boîte quantique ou point quantique, aussi connu sous son appellation anglophone de quantum dot, est une nanostructure de semi-conducteurs. De par sa taille et ses caractéristiques, elle se comporte comme un puits de potentiel qui confine les électrons (et les trous) dans les trois dimensions de l'espace, dans une région d'une taille de l'ordre de la longueur d'onde des électrons (longueur d'onde de De Broglie), soit quelques dizaines de nanomètres dans un semi-conducteur.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Carrier generation and recombinationIn the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Amplificateur optiqueEn optique, on appelle amplificateur optique un dispositif qui amplifie un signal lumineux sans avoir besoin de le convertir d'abord en signal électrique avant de l'amplifier avec les techniques classiques de l'électronique. Un amplificateur à fibre dopée fonctionne à la manière d'un laser. Une portion de fibre optique est dopée et est pompée optiquement avec un laser afin de placer les ions de dopage dans un état excité.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.