Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Transfert d'énergie entre molécules fluorescentesLe transfert d'énergie entre molécules fluorescentes ou transfert d'énergie par résonance de type Förster (en anglais, Förster resonance energy transfer ou FRET, resonance energy transfer ou RET ou electronic energy transfer ou EET), bien qu’observé par Perrin au début du , est décrit pour la première fois par Theodor Förster en 1946. Les applications de cette approche à l’étude des interactions protéiques apparaîtront vers la fin du . vignette|Figure 1. Conditions du FRET. A.
Conversion intersystèmeL'IUPAC décrit la conversion intersystème comme : Lorsque, dans une molécule, un électron est excité jusqu'à un niveau d'énergie supérieur (notamment par absorption d'un rayonnement), cela conduit selon les cas à un état singulet ou à un état triplet : Un état singulet correspond à une configuration électronique dans laquelle tous les électrons de spin opposés sont appariés deux à deux (ce qu'on représente par le diagramme ), y compris l'électron excité bien qu'il occupe un niveau d'énergie différent des éle
ResonatorA resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones.
Spectroscopie térahertz dans le domaine temporelvignette| Impulsion typique mesurée par THz-TDS. En physique, la spectroscopie TéraHertz dans le domaine temporel ( THz-TDS ) est une technique spectroscopique dans laquelle les propriétés de la matière sont sondées avec de courtes impulsions de rayonnement térahertz. Le schéma de génération et de détection est sensible à l'effet de l'échantillon sur l'amplitude et la phase du rayonnement térahertz. En mesurant dans le domaine temporel, la technique peut fournir plus d'informations que la spectroscopie à transformée de Fourier conventionnelle, qui n'est sensible qu'à l'amplitude.
Automodulation de phaseL'automodulation de phase (self-phase modulation, souvent abrégé en SPM en anglais) est un effet optique non linéaire d'interaction lumière-matière (gaz, solide, liquide). Une impulsion ultra-courte, lorsqu'elle voyage dans un milieu matériel, induit une variation de l'indice de réfraction de ce milieu par effet Kerr. Cette variation induit à son tour un décalage de phase dans l'impulsion, ce qui conduit à une modification du spectre en fréquence de l'impulsion.
Température thermodynamiqueLa température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
Circuit intégréLe circuit intégré (CI), aussi appelé puce électronique, est un composant électronique, basé sur un semi-conducteur, reproduisant une ou plusieurs fonctions électroniques plus ou moins complexes, intégrant souvent plusieurs types de composants électroniques de base dans un volume réduit (sur une petite plaque), rendant le circuit facile à mettre en œuvre. Il existe une très grande variété de ces composants divisés en deux grandes catégories : analogique et numérique.
Optique non linéaireLorsqu'un milieu matériel est mis en présence d'un champ électrique , il est susceptible de modifier ce champ en créant une polarisation . Cette réponse du matériau à l'excitation peut dépendre du champ de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E.