ViscositéLa viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Taux de cisaillementvignette|redresse=1.7|Un fluide s'écoule de gauche à droite le long d'une limite solide. Ce faisant, il subit un frottement avec elle, ce qui entraîne l'application d'une contrainte de cisaillement. Selon la condition de non-glissement, la vitesse de l'écoulement au contact de cette limite est égale à zéro, mais la vitesse augmente de 0 à v (v = la vitesse du fluide) à une certaine hauteur. La région située entre la frontière et cette hauteur est appelée couche limite et c'est dans cette couche que l'on peut observer la formation de tourbillons contrarotatifs dans l'écoulement.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Contrainte de cisaillementvignette|Une force est appliquée à la partie supérieure d'un carré, dont la base est bloquée. La déformation en résultant transforme le carré en parallélogramme. Une contrainte de cisaillement τ (lettre grecque « tau ») est une contrainte mécanique appliquée parallèlement à la section transversale d'un élément allongé, par opposition aux contraintes normales qui sont appliquées perpendiculairement à cette surface (donc longitudinalement, c.-à-d. selon l'axe principal de la pièce). C'est le rapport d'une force à une surface.
Wavelet transformIn mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Vitesse de déformationEn mécanique des milieux continus, on considère la déformation d'un élément de matière au sein d'une pièce. On s'attache donc à décrire ce qui se passe localement et non pas d'un point de vue global, et à utiliser des paramètres indépendants de la forme de la pièce. La vitesse de déformation que l'on considère est donc la dérivée par rapport au temps de la déformation ε ; on la note donc (« epsilon point ») : Elle s'exprime en s−1, parfois en %/s. C'est un des paramètres capitaux en rhéologie.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Shear flowIn fluid dynamics, shear flow is the flow induced by a force in a fluid. In solid mechanics, shear flow is the shear stress over a distance in a thin-walled structure. For thin-walled profiles, such as that through a beam or semi-monocoque structure, the shear stress distribution through the thickness can be neglected. Furthermore, there is no shear stress in the direction normal to the wall, only parallel. In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section.