Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Circuit en boucle ouverteEn régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Control loopA control loop is the fundamental building block of control systems in general industrial control systems and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP). There are two common classes of control loop: open loop and closed loop.
Réponse en fréquenceLa réponse en fréquence est la mesure de la réponse de tout système (mécanique, électrique, électronique, optique, etc.) à un signal de fréquence variable (mais d'amplitude constante) à son entrée. Dans la gamme des fréquences audibles, la réponse en fréquence intéresse habituellement les amplificateurs électroniques, les microphones et les haut-parleurs. La réponse du spectre radioélectrique peut faire référence aux mesures de câbles coaxiaux, aux câbles de catégorie 6 et aux dispositifs de mélangeur vidéo sans fil.
Commande prédictiveLa commande prédictive (ou compensation ou correction anticipatrice) est une technique de commande avancée de l’automatique. Elle a pour objectif de commander des systèmes industriels complexes. Le principe de cette technique est d'utiliser un modèle dynamique du processus à l'intérieur du contrôleur en temps réel afin d'anticiper le futur comportement du procédé. La commande prédictive fait partie des techniques de contrôle à modèle interne (IMC: Internal Model Controler).
Closed-loop controllerA closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Diagramme de BodeLe diagramme de Bode est un moyen de représenter la réponse en fréquence d'un système, notamment électronique. Hendrik Wade Bode, des Laboratoires Bell, a proposé ce diagramme pour l'étude graphique simple d'un asservissement et de la contre-réaction dans un dispositif électronique. Il permet de visualiser rapidement la marge de gain, la marge de phase, le gain continu, la bande passante, le rejet des perturbations et la stabilité des systèmes à partir de la fonction de transfert.
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Robustesse (ingénierie)En ingénierie, la robustesse d'un système se définit comme la « stabilité de sa performance ». On distingue trois types de systèmes : les systèmes non-performants, qui ne remplissent pas les fonctionnalités attendues par l'utilisateur ; les systèmes performants fragiles, qui sont performants mais uniquement pour une plage réduite des paramètres internes ou externes ; les systèmes performants robustes, qui restent performants malgré des conditions externes présentant de larges variations d'amplitude (exemple : variation de température, d'adhérence au sol, de dispersion d'usinage.
HinfiniDans la théorie de la commande dans le domaine de l'automatique, la synthèse Hinfini ou H∞ est une méthode qui sert à la conception de commandes optimales. La synthèse H∞ est une méthode qui sert à la conception de commandes optimales. Il s'agit essentiellement d'une méthode d'optimisation, qui prend en compte une définition mathématique des contraintes en ce qui concerne le comportement attendu en boucle fermée. La commande Hinfini a pour principal avantage la capacité d'inclure dans un même effort de synthétisation les concepts liés à la commande classique et à la commande robuste.