In control theory, robust control is an approach to controller design that explicitly deals with uncertainty. Robust control methods are designed to function properly provided that uncertain parameters or disturbances are found within some (typically compact) set. Robust methods aim to achieve robust performance and/or stability in the presence of bounded modelling errors.
The early methods of Bode and others were fairly robust; the state-space methods invented in the 1960s and 1970s were sometimes found to lack robustness, prompting research to improve them. This was the start of the theory of robust control, which took shape in the 1980s and 1990s and is still active today.
In contrast with an adaptive control policy, a robust control policy is static, rather than adapting to measurements of variations, the controller is designed to work assuming that certain variables will be unknown but
bounded.
Informally, a controller designed for a particular set of parameters is said to be robust if it also works well under a different set of assumptions. High-gain feedback is a simple example of a robust control method; with sufficiently high gain, the effect of any parameter variations will be negligible. From the closed-loop transfer function perspective, high open-loop gain leads to substantial disturbance rejection in the face of system parameter uncertainty. Other examples of robust control include sliding mode and terminal sliding mode control.
The major obstacle to achieving high loop gains is the need to maintain system closed-loop stability. Loop shaping which allows stable closed-loop operation can be a technical challenge.
Robust control systems often incorporate advanced topologies which include multiple feedback loops and feed-forward paths. The control laws may be represented by high order transfer functions required to simultaneously accomplish desired disturbance rejection performance with the robust closed-loop operation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-
Ce cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
Le contrôle de processus est un terme utilisé pour désigner l'ensemble du matériel et des logiciels servant à piloter et surveiller le processus de fabrication de produits. Il est le plus souvent constitué d'une chaîne de moyens (appelée boucle de régulation) : capteurs de mesures physiques ou physico-chimiques : pression, niveau, débit, température, pH, viscosité, turbidité, conductivité... Ces capteurs fournissent aux régulateurs de manière continue ou discrète l'indication directe ou indirecte de l'état du processus.
En mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Introduit le contrôle prédictif (DEEPC) activé par les données comme méthode de conception des contrôleurs directement à partir des données d'entrée/sortie mesurées, réduisant ainsi le coût de conception et de mise en service.
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
2024
, ,
The paper presents a robust data-driven controller synthesis method for generalised multi-input multioutput (MIMO) systems. Using the frequency response of a linear time-invariant (LTI) MIMO system and characterising perturbations through Integral Quadrati ...
2024
,
Modern control synthesis methods rely on accurate models to derive a performant controller. Obtaining a good model is often a costly step, and has led to a renewed interest in data-driven synthesis methods. Frequency-response-based synthesis methods have b ...