In control theory, robust control is an approach to controller design that explicitly deals with uncertainty. Robust control methods are designed to function properly provided that uncertain parameters or disturbances are found within some (typically compact) set. Robust methods aim to achieve robust performance and/or stability in the presence of bounded modelling errors. The early methods of Bode and others were fairly robust; the state-space methods invented in the 1960s and 1970s were sometimes found to lack robustness, prompting research to improve them. This was the start of the theory of robust control, which took shape in the 1980s and 1990s and is still active today. In contrast with an adaptive control policy, a robust control policy is static, rather than adapting to measurements of variations, the controller is designed to work assuming that certain variables will be unknown but bounded. Informally, a controller designed for a particular set of parameters is said to be robust if it also works well under a different set of assumptions. High-gain feedback is a simple example of a robust control method; with sufficiently high gain, the effect of any parameter variations will be negligible. From the closed-loop transfer function perspective, high open-loop gain leads to substantial disturbance rejection in the face of system parameter uncertainty. Other examples of robust control include sliding mode and terminal sliding mode control. The major obstacle to achieving high loop gains is the need to maintain system closed-loop stability. Loop shaping which allows stable closed-loop operation can be a technical challenge. Robust control systems often incorporate advanced topologies which include multiple feedback loops and feed-forward paths. The control laws may be represented by high order transfer functions required to simultaneously accomplish desired disturbance rejection performance with the robust closed-loop operation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
ME-524: Advanced control systems
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
ME-326: Control systems and discrete-time control
Ce cours inclut la modélisation et l'analyse de systèmes dynamiques, l'introduction des principes de base et l'analyse de systèmes en rétroaction, la synthèse de régulateurs dans le domain fréquentiel
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.