Moment d'inertieLe moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
Fonction de Wignervignette| Fonction de Wigner d'un état du type du "chat de Schrödinger" (mélange de 2 états opposés) La fonction de Wigner (également appelée distribution de quasi-probabilité de Wigner) a été introduite par Eugene Wigner en 1932 pour étudier les corrections quantiques à la mécanique statistique classique. L'objectif était de lier la fonction d'onde qui apparaît dans l'équation de Schrödinger à une distribution de probabilité dans l'espace des phases.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
BalistiqueLa balistique est la science qui a pour objet l'étude du mouvement des projectiles. Le terme « balistique » a pour étymologie le grec βαλλίστρα (littéralement : ballistra), issu du mot βάλλειν, ballein, « lancer, jeter », au pluriel ballistæ en latin). Avant de devenir un champ d'étude mathématique et physique, la balistique était une discipline empirique. Elle partage son étymologie avec une arme de siège célèbre de l'antiquité, la baliste. Tout projectile lancé, propulsé ou mis en mouvement dans un référentiel donné va suivre une trajectoire balistique.
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Optical vortexAn optical vortex (also known as a photonic quantum vortex, screw dislocation or phase singularity) is a zero of an optical field; a point of zero intensity. The term is also used to describe a beam of light that has such a zero in it. The study of these phenomena is known as singular optics. In an optical vortex, light is twisted like a corkscrew around its axis of travel. Because of the twisting, the light waves at the axis itself cancel each other out.
Espace des phasesdroite|vignette| Trajectoires dans l'espace des phases pour un pendule simple. L'axe X correspond à la position du pendule, et l'axe Y sa vitesse. Dans la théorie des systèmes dynamiques, l'espace des phases (ou espace d'état) d'un système est l'espace mathématique dans lequel tous les états possibles du système sont représentés ; chaque état possible correspondant à un point unique dans l'espace des phases. Pour un système mécanique, l'espace des phases se compose généralement de toutes les valeurs possibles des variables de position et d'impulsion représentant le système.
Machineright|thumb|Machine à rouler les cigarettes de James Albert Bonsack (1880) Une machine est un produit fini mécanique capable d'utiliser une source d'énergie communément disponible pour effectuer par elle-même, sous la conduite ou non d'un opérateur, une ou plusieurs tâches spécifiques, en exerçant un travail mécanique sur un outil, la charge à déplacer ou la matière à façonner. Une machine peut être fixe (machine-outil, machine à laver, etc.) ou mobile (locomotive, tondeuse à gazon, machine à écrire, etc.).