Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Prime manifoldIn topology, a branch of mathematics, a prime manifold is an n-manifold that cannot be expressed as a non-trivial connected sum of two n-manifolds. Non-trivial means that neither of the two is an n-sphere. A similar notion is that of an irreducible n-manifold, which is one in which any embedded (n − 1)-sphere bounds an embedded n-ball. Implicit in this definition is the use of a suitable , such as the category of differentiable manifolds or the category of piecewise-linear manifolds.
Gauge theory (mathematics)In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Règle d'or de Fermivignette|la règle d'or de Fermi explique la variation d'intensité des raies d'émission d'un spectre, ici celui du sodium. En physique quantique, la règle d'or de Fermi est un moyen de calculer le taux de transition (probabilité de transition par unité de temps) à partir d'un état propre énergétique d'un système quantique vers un continuum d'états propres, par perturbation. On considère que le système est initialement placé dans un état propre, , d'un hamiltonien . On considère l'effet d'une perturbation (pouvant être dépendant du temps).
Hodge structureIn mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Électrodynamique quantiqueLélectrodynamique quantique (parfois dite relativiste) est une théorie physique ayant pour but de concilier l'électromagnétisme avec la mécanique quantique en utilisant un formalisme lagrangien relativiste. Selon cette théorie, les charges électriques interagissent par échange de photons virtuels. L'étude statique (absence d'évolution au cours du temps) du champ électrique s'appelle électrostatique, celle du champ magnétique magnétostatique. En dynamique, les deux champs deviennent couplés, devenant une seule discipline, l'électro-magnéto-dynamique.
Mécanique analytiqueLa mécanique analytique est une formulation de la mécanique classique basée sur le calcul variationnel. La mécanique analytique s'est avérée un outil très important en physique théorique. En particulier, la mécanique quantique emprunte énormément au formalisme de la mécanique analytique. Contrairement à la mécanique d'Isaac Newton qui s'appuie sur le concept de point matériel, la mécanique analytique se penche sur les systèmes arbitrairement complexes, et étudie l'évolution de leurs degrés de libertés dans ce qu'on appelle un espace de configuration.
Géométrie non commutativeLa géométrie non commutative, développée par Alain Connes, est une branche des mathématiques, et plus précisément un type de géométrie algébrique distincte de la géométrie algébrique telle qu'on l'entend habituellement (celle développée par Alexandre Grothendieck), car s'intéressant à des objets définis à partir de structures algébriques non commutatives. L'idée principale est qu'un espace au sens de la géométrie usuelle peut être décrit par l'ensemble des fonctions numériques définies sur cet espace.