AvalancheUne avalanche () de neige est d'abord un phénomène physique : une masse de neige qui se détache puis dévale un versant de montagne sous l'effet de la pesanteur, ou, formulé autrement, le mouvement rapide sur une grande pente d'un volume de neige, à la suite d'une rupture d'équilibre dans le manteau neigeux initial. Une avalanche de neige est aussi un aléa avec la possibilité qu'une telle menace (déclenchement, écoulement, impact) se réalise dans un lieu donné à un instant donné.
Instabilité gravitairevignette|Cônes d'éboulis sur la rive nord de Isfjorden en Norvège. L’instabilité gravitaire est également connue sous le nom de processus de pente, ou mouvement de masse rocheuse. Ce processus géomorphologique implique des mouvements de roches (sol, substrat, régolithe...) le long de l'inclinaison d'une surface topographique sous l'effet de la gravité. Derrière ce nom, se cachent différents processus comme la solifluxion, les glissements de terrain, les laves torrentielles, les avalanches, les effondrements.
Gravier (granulat)vignette|Grave Le gravier est un granulat composé d'un mélange de sable et de gravillons. Il est utilisé principalement dans l'exécution des corps de chaussées (routes et autoroutes), de plateformes (parcs de stationnement, aires de stockage...), de pistes d'aérodromes. Dans toutes ces réalisations, quelques décimètres d'épaisseur de gravier sont utilisées sous la couche de finition (enrobé bitumineux de couverture, dallage béton, enduit superficiel d'usure...).
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Forme de connexionEn géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.
Vecteur vitesseLe vecteur vitesse, nommé parfois vélocité, est une notion de physique qui à la différence de la vitesse comprend un déplacement vers un point. Par exemple, une voiture a une vitesse de 60 km/h mais a une vélocité de 60 km/h vers le nord, le nord étant un point de référence ou de destination pour la voiture. Le terme vélocité est tiré des mots latins velocitas et velox signifiant respectivement rapidité, vitesse, et rapide, prompt, véloce, mots ayant eux-mêmes une origine obscure, mais supposé étant lié à la racine proto-indo-européenne wegh- signifiant "aller, bouger," et "transport dans un véhicule".
Metric connectionIn mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to: A connection for which the covariant derivatives of the metric on E vanish. A principal connection on the bundle of orthonormal frames of E. A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection.