Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Bruit de mesureEn métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.
Computer representation of surfacesIn technical applications of 3D computer graphics (CAx) such as computer-aided design and computer-aided manufacturing, surfaces are one way of representing objects. The other ways are wireframe (lines and curves) and solids. Point clouds are also sometimes used as temporary ways to represent an object, with the goal of using the points to create one or more of the three permanent representations. If one considers a local parametrization of a surface: then the curves obtained by varying u while keeping v fixed are coordinate lines, sometimes called the u flow lines.
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Freeform surface modellingFreeform surface modelling is a technique for engineering freeform surfaces with a CAD or CAID system. The technology has encompassed two main fields. Either creating aesthetic surfaces (class A surfaces) that also perform a function; for example, car bodies and consumer product outer forms, or technical surfaces for components such as gas turbine blades and other fluid dynamic engineering components. CAD software packages use two basic methods for the creation of surfaces.
Surface régléeEn géométrie, une surface réglée est une surface par chaque point de laquelle passe une droite, appelée génératrice, contenue dans la surface. On peut décrire une surface réglée S en la considérant comme la réunion d'une famille de droites D(u) dépendant d'un paramètre u parcourant une partie I de l'ensemble des réels. Il suffit pour cela de se donner pour chaque u dans I un point P(u) et un vecteur directeur de D(u). On obtient alors une représentation paramétrique de la surface S : L'arc paramétré par est appelé une courbe directrice de S.
Angle of arrivalThe angle of arrival (AoA) of a signal is the direction from which the signal (e.g. radio, optical or acoustic) is received. Measurement of AoA can be done by determining the direction of propagation of a radio-frequency wave incident on an antenna array or determined from maximum signal strength during antenna rotation. The AoA can be calculated by measuring the time difference of arrival (TDOA) between individual elements of the array. Generally this TDOA measurement is made by measuring the difference in received phase at each element in the antenna array.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.