Pression magnétiqueEn électromagnétisme, la pression magnétique désigne une quantité associée au champ magnétique, s'apparentant dans certaines situations à une force de pression, d'où son nom. La pression magnétique apparaît en magnétohydrodynamique, quand on écrit la version idoine de l'équation d'Euler, c'est-à-dire l'équivalent du principe fondamental de la dynamique appliqué à un élément de fluide soumis à un champ magnétique.
SphéromakUn sphéromak est un arrangement de plasma prenant la forme d'un vortex toroïdal (un tube courbé refermé sur lui-même). Le terme sphéromak n'est pas un synonyme de tokamak sphérique. Le sphéromak contient de grands courants électriques internes avec les champs magnétiques associés. Ils sont disposés de manière que les forces magnétohydrodynamiques à l'intérieur du sphéromak soient presque équilibrées, ce qui permet d'obtenir des temps de confinement de longue durée (microsecondes) sans champs externes.
Instabilité électrothermiqueL'instabilité électrothermique dite aussi instabilité de Velikhov ou instabilité d'ionisation a été prédite par la théorie par le physicien russe Evgeny Velikhov en 1962, prédiction qui fut confirmée expérimentalement dès 1965. C'est une « qui survient dans le plasma bitempérature d'un convertisseur MHD, soumis à un fort champ magnétique et en régime d’ionisation hors d'équilibre thermodynamique, c'est-à-dire lorsque la température électronique excède la température ionique (par exemple quand le « gaz d'électrons » est chauffé à kelvins, alors que les « lourds » (atomes et ions) restent « froids » aux alentours de ).
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Jet bundleIn differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions. Historically, jet bundles are attributed to Charles Ehresmann, and were an advance on the method (prolongation) of Élie Cartan, of dealing geometrically with higher derivatives, by imposing differential form conditions on newly introduced formal variables.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Flambagethumb|Flexion sous un effort de compression. Le flambage ou flambement est un phénomène d'instabilité d'une structure élastique qui pour échapper à une charge importante exploite un mode de déformation non sollicité, opposant moins de raideur à la charge. La notion de flambement s'applique généralement à des poutres élancées qui lorsqu'elles sont soumises à un effort normal de compression, ont tendance à fléchir et se déformer dans une direction perpendiculaire à l'axe de compression (passage d'un état de compression à un état de flexion) ; mais elle peut aussi s'appliquer par exemple à des lames de ressort sollicitées en flexion qui se déversent en torsion pour échapper à la charge.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.