Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Courant de déplacementEn électromagnétisme, le courant de déplacement est un terme introduit par Maxwell pour étendre aux régimes variables dans le temps le théorème d'Ampère valide en magnétostatique. Vers 1865, Maxwell a réalisé une synthèse harmonieuse des diverses lois expérimentales découvertes par ses prédécesseurs (lois de l'électrostatique, du magnétisme, de l'induction...). Mais cette synthèse n'a été possible que parce que Maxwell a su dépasser les travaux de ses devanciers, en introduisant dans une équation un « chaînon manquant », appelé le courant de déplacement, dont la présence assure la cohérence de l'édifice unifié.
Équation de PoissonEn analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante : où est l'opérateur laplacien et est une distribution généralement donnée. Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Système de coordonnées célestesvignette En astronomie, un système de coordonnées céleste est un système de coordonnées permettant de déterminer une position dans le ciel, généralement exprimée en notation décimale ou pseudo-sexagésimale (l'unité de base de l'ascension droite étant cependant l'heure sidérale, équivalente à 15°). Il existe plusieurs systèmes, utilisant une grille de coordonnées projetée sur la sphère céleste, de manière analogue aux systèmes de coordonnées géographiques utilisés à la surface de la Terre.
Coordonnées géographiquesvignette|Coordonnées géographiques sur un globe : la latitude correspond à la mesure de l’angle marqué phi (φ) ; la mesure de l’angle marqué lambda (λ) par rapport au méridien de référence donne la longitude.|194x194px lang=fr|vignette|upright=1.5|Latitude et longitude sur la Terre. Par coordonnés géographiques (ou encore « repères géographiques ») d'un lieu sur la Terre, on entend un système de trois coordonnées qui sont le plus souvent : la latitude, la longitude et l'altitude (ou l'élévation) par rapport au niveau moyen de la mer (élévation orthométrique) ou par rapport à une surface de référence, en général ellipsoïde (élévation ellipsoïdale).
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
InstabilitéÉtat de déséquilibre dynamique ou thermique de l'atmosphère, qui détermine les mouvements verticaux ascendants.