Fusion par confinement magnétiqueLa fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
IngénierieL'ingénierie est l'ensemble des fonctions qui mènent de la conception et des études, de l'achat et du contrôle de fabrication des équipements, à la construction et à la mise en service d'une installation technique ou industrielle. Par extension, le terme est aussi souvent utilisé dans d'autres domaines : on parle par exemple d'ingénierie informatique ou d'ingénierie financière.
StellaratorLe stellarator (de stellar : stellaire, et generator : générateur) est un dispositif destiné à la production de réactions contrôlées de fusion nucléaire proche du tokamak. Le confinement du plasma est entièrement réalisé par un champ magnétique hélicoïdal créé par l'arrangement complexe de bobines autour du tore, alimentées en courants forts et appelées bobines poloïdales. Le stellarator est analogue au tokamak à la différence qu'il n'utilise pas de courant toroïdal circulant à l'intérieur du plasma pour le confiner.
History of Lorentz transformationsThe history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product . In mathematics, transformations equivalent to what was later known as Lorentz transformations in various dimensions were discussed in the 19th century in relation to the theory of quadratic forms, hyperbolic geometry, Möbius geometry, and sphere geometry, which is connected to the fact that the group of motions in hyperbolic space, the Möbius group or projective special linear group, and the Laguerre group are isomorphic to the Lorentz group.
Electromagnetic massElectromagnetic mass was initially a concept of classical mechanics, denoting as to how much the electromagnetic field, or the self-energy, is contributing to the mass of charged particles. It was first derived by J. J. Thomson in 1881 and was for some time also considered as a dynamical explanation of inertial mass per se. Today, the relation of mass, momentum, velocity, and all forms of energy – including electromagnetic energy – is analyzed on the basis of Albert Einstein's special relativity and mass–energy equivalence.
Force électromagnétiquevignette|Force de Lorentz agissant sur des particules chargées se déplaçant rapidement dans une chambre à bulles. Les trajectoires de charge positive et négative se courbent dans des directions opposées.La force électromagnétique ou force de Lorentz est la force subie par une particule chargée dans un champ électromagnétique. C'est la principale manifestation de l'interaction électromagnétique. Cette force, appliquée dans diverses situations, induit l'ensemble des interactions électriques et magnétiques observées ; elle est de ce fait principalement étudiée en physique et en chimie.
Centre CEA de CadaracheLe centre CEA de Cadarache est le plus grand centre de recherche et développement en Europe sur les énergies bas carbone. Il fait partie des neuf centres du Commissariat à l'énergie atomique et aux énergies alternatives (CEA) implantés sur le territoire français, réunissant . Installé en Provence-Alpes-Côte d'Azur, sur la commune de Saint-Paul-lès-Durance, le centre CEA de Cadarache est au cœur de la transition énergétique avec ses instituts de recherche et plateformes expérimentales dans le domaine des énergies bas-carbone : énergie nucléaire (fission, fusion), bioénergies et énergies solaires.
Histoire de la relativité restreinteL’histoire de la relativité restreinte décrit le développement de propositions et constatations empiriques et conceptuelles, au sein de la physique théorique, qui ont permis d’aboutir à une nouvelle compréhension de l’espace et du temps. Cette théorie, nommée « relativité restreinte », se distingue des travaux ultérieurs d'Albert Einstein, appelés « relativité générale ». Dans ses Principia mathematica, publiés pour la première fois en 1687 et qui influencent la physique pendant 200 ans, Isaac Newton postule les notions d'espace et de temps absolus et pose la théorie corpusculaire de la lumière.
Génie chimiqueLe génie chimique, ou génie des procédés physico-chimiques, désigne l'application de la chimie physique à l'échelle industrielle. Elle a pour but la transformation de la matière dans un cadre industriel et consiste en la conception, le dimensionnement et le fonctionnement d'un procédé comportant une ou plusieurs transformations chimiques et/ou physiques. Les méthodes utilisées dans un laboratoire ne sont souvent pas adaptées à la production industrielle d'un point de vue économique et technique.
Génie mécaniqueLe génie mécanique (ou l'ingénierie mécanique) désigne l'ensemble des connaissances liées à la , au sens physique (sciences des mouvements) et au sens technique (étude des mécanismes). Ce champ de connaissances va de la conception d'un produit mécanique au recyclage de ce dernier en passant par la fabrication, la maintenance, etc. Données dans l'ordre du cycle de vie d'un produit mécanique. Conception de produit : analyse fonctionnelle, dessin industriel, conception assistée par ordinateur.