Indépendance (probabilités)vignette|Paire de dés L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités. Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
Validité (logique)En logique, la validité est la manière dont les prémisses et la conclusion concordent logiquement dans les arguments réussis. La forme d'une argumentation déductive est dite valide si et seulement si elle utilise des règles d’inférence par lesquelles il est impossible d’obtenir une conclusion fausse à partir de prémisses vraies. Un argument est valide si et seulement si la vérité de ses prémisses entraîne celle de sa conclusion. Il serait contradictoire d'affirmer les prémisses et de nier la conclusion.
Conditional independenceIn probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If is the hypothesis, and and are observations, conditional independence can be stated as an equality: where is the probability of given both and .
Théorème de Fermat sur les points stationnairesEn analyse réelle, le théorème de Fermat sur les points stationnaires permet, lors de la recherche d'éventuels extrema locaux d'une fonction dérivable, de limiter l'étude aux zéros de sa dérivée et aux bornes de son ensemble de définition. L'énoncé est le suivant : La réciproque est fausse : par exemple, la fonction , en , a une dérivée nulle mais pas d'extremum local. La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1.
Correction (logique)En logique, la forme d'une argumentation déductive est correcte si et seulement si elle est valide et que toutes ses prémisses sont effectivement vraies. En logique formelle, un système logique est correct si on peut lui associer une sémantique (on dit aussi un modèle) qui le justifie. La correction indique donc que les règles d’un tel système mettent en œuvre des raisonnements qui font du sens, puisqu'on peut les interpréter. Le terme de correction peut ici être pris dans son sens de qualité de ce qui est correct.
Interaction (statistiques)Une interaction, en statistiques, peut survenir lorsqu'on considère la relation entre deux variables ou plus. Le terme "interaction" est donc utilisé pour décrire une situation dans laquelle l'influence d'une variable dépend de l'état de la seconde (ce qui est ce cas, lorsque les deux variables ne sont pas additives). Le plus souvent, les interactions apparaissent dans le contexte des analyses de régression. La présence d'interactions peut avoir des implications importantes pour l'interprétation des modèles statistiques.
Indépendance des alternatives non pertinentesL'indépendance des alternatives non pertinentes (en anglais independence of irrelevant alternatives, ou IIA) est un axiome utilisé dans les sciences sociales dans le cadre de la théorie de la décision. Quoique les formulations de l'IIA varient, elles ont comme point commun d'essayer de rationaliser le comportement individuel dans une situation d'agrégation ou d'addition de préférences individuelles. L'IANP est aussi parfois appelée condition de Chernoff (du nom de Herman Chernoff), ou propriété alpha de Sen (du nom de Amartya Sen).