vignette|Paire de dés
L'indépendance est une notion probabiliste qualifiant de manière intuitive des événements aléatoires n'ayant aucune influence l'un sur l'autre. Il s'agit d'une notion très importante en statistique et en théorie des probabilités.
Par exemple, la valeur d'un premier lancer de dés n'a aucune influence sur la valeur du second lancer. De même, pour un lancer, le fait dobtenir une valeur inférieure ou égale à quatre n'influe en rien sur la probabilité que le résultat soit pair ou impair : les deux événements sont dits indépendants.
L'indépendance ou non de deux événements n'est pas toujours facile à établir.
La définition mathématique de l'indépendance de deux événements est la suivante :
La définition mathématique ci-dessus est assez peu parlante. Le lien entre le concept intuitif d'indépendance et la ci-dessus apparaît plus clairement si l'on introduit la notion de probabilité conditionnelle :
En excluant les cas particuliers peu intéressants où est impossible, i.e. dans le cas où et où est certain, i.e. dans le cas où on peut alors reformuler la définition de l'indépendance de la manière suivante
Ainsi les événements et sont dits indépendants si notre pronostic sur l'événement est le même :
si on sait que l'événement s'est produit (pronostic ),
si on sait que l'événement ne s'est pas produit (pronostic ),
si on ne sait rien sur le statut de l'événement (pronostic ).
Autrement dit, est dit indépendant de si notre pronostic sur l'événement n'est affecté par aucune information concernant , ni par l'absence d'information concernant . On peut échanger les rôles de et de dans la définition utilisant les probabilités conditionnelles, à condition bien sûr d'exclure les cas particuliers peu intéressants où est impossible, et où est certain.
Bien que la définition utilisant les probabilités conditionnelles soit plus intuitive, elle a l'inconvénient d'être moins générale, et de ne pas faire jouer un rôle symétrique aux deux événements et .
Notons par ailleurs qu'un événement certain est indépendant de tout événement quel qu'il soit.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
vignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
vignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.
En théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...
The field of synthetic data is more and more present in our everyday life. The transportation domain is particularly interested in improving the methods for the generation of synthetic data in order to address the privacy and availability issue of real dat ...
2023
,
This paper presents explicit solutions for two related non-convex information extremization problems due to Gray and Wyner in the Gaussian case. The first problem is the Gray-Wyner network subject to a sum-rate constraint on the two private links. Here, ou ...