Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Traitement de la paroleLe traitement de la parole est une discipline technologique dont l'objectif est la captation, la transmission, l'identification et la synthèse de la parole. Dans ce domaine, on peut définir la parole comme un texte oral. On s'intéresse à l'intelligibilité, c'est-à-dire à la possibilité, pour la personne qui écoute, de comprendre sans erreur le texte émis ; à l'amélioration de l'intelligibilité quand le signal est dégradé ; à l'identification de la personne qui parle ; à l'établissement automatique d'un texte écrit à partir de la parole ; à la synthèse de la parole à partir d'un texte écrit.
Speaker recognitionSpeaker recognition is the identification of a person from characteristics of voices. It is used to answer the question "Who is speaking?" The term voice recognition can refer to speaker recognition or speech recognition. Speaker verification (also called speaker authentication) contrasts with identification, and speaker recognition differs from speaker diarisation (recognizing when the same speaker is speaking).
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Synthèse vocaleLa synthèse vocale est une technique informatique de synthèse sonore qui permet de créer de la parole artificielle à partir de n'importe quel texte. Pour obtenir ce résultat, elle s'appuie à la fois sur des techniques de traitement linguistique, notamment pour transformer le texte orthographique en une version phonétique prononçable sans ambiguïté, et sur des techniques de traitement du signal pour transformer cette version phonétique en son numérisé écoutable sur un haut parleur.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Quasiprobability distributionA quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states.