TreebankIn linguistics, a treebank is a parsed text corpus that annotates syntactic or semantic sentence structure. The construction of parsed corpora in the early 1990s revolutionized computational linguistics, which benefitted from large-scale empirical data. The term treebank was coined by linguist Geoffrey Leech in the 1980s, by analogy to other repositories such as a seedbank or bloodbank. This is because both syntactic and semantic structure are commonly represented compositionally as a tree structure.
Langage récursifEn mathématiques, en logique et en informatique, un langage récursif est un type de langage formel qui est aussi appelé récursif, décidable, ou Turing-decidable. Il y a plusieurs définitions équivalentes de langage récursif. On peut définir cette notion directement, comme une généralisation de celle d'ensemble récursif (des sous-ensembles d'entiers ou de uples d'entiers), ou passer par des codages dans les entiers, en utilisant la théorie de la calculabilité.
Langage contextuelEn informatique théorique, et spécialement en théorie des langages, un langage contextuel (en anglais context-sensitive language) est un langage formel engendré par une grammaire contextuelle. C'est un langage de type 1 dans la hiérarchie de Chomsky. Les langages contextuels sont les langages reconnus par les automates linéairement bornés, c'est-à-dire les machines de Turing dont la mémoire de travail est linéairement bornée en fonction de la taille de l'entrée.
Formule (mathématiques)En logique et en mathématiques, une formule est une suite finie d'objets, dotée de propriétés particulières qui rendent possible la syntaxe dans tous ces domaines. Étant donné un ensemble E et une fonction de poids p: E →N, une formule est un mot extrait de E obtenu par les deux règles de construction suivantes : un seul élément de E de poids 0 est une formule ; si t est un élément de poids n, pour toute suite de n formules F1, F2, ...., Fn, le mot concaténé tF1F2....Fn est une formule.
Head-driven phrase structure grammarHPSG (abréviation anglaise de head-driven phrase structure grammar, traduction française : grammaire syntagmatique guidée par les têtes) est, en linguistique, une théorie syntaxique. Son nom se réfère à la notion de tête, élément principal d'un syntagme. Comme la LFG, autre théorie syntaxique, il s'agit d'une grammaire d'unification : elle associe un attribut (ex. nombre) à une valeur (ex. pluriel), ce qui la rend adaptée au traitement automatique de la langue.
Notation (mathématiques)On utilise en mathématiques un ensemble de notations pour condenser et formaliser les énoncés et les démonstrations. Ces notations se sont dégagées peu à peu au fil de l'histoire des mathématiques et de l’émergence des concepts associés à ces notations. Elles ne sont pas totalement standardisées. Quand deux traductions d'une notation sont données, l'une est la traduction mot à mot et l'autre est la traduction naturelle. Le présent article traite des notations mathématiques latines.
Anchor textThe anchor text, link label or link text is the visible, clickable text in an HTML hyperlink. The term "anchor" was used in older versions of the HTML specification for what is currently referred to as the a element, or . The HTML specification does not have a specific term for anchor text, but refers to it as "text that the a element wraps around". In XML terms (since HTML is XML), the anchor text is the content of the element, provided that the content is text. Usually, web search engines analyze anchor text from hyperlinks on web pages.
Uninterpreted functionIn mathematical logic, an uninterpreted function or function symbol is one that has no other property than its name and n-ary form. Function symbols are used, together with constants and variables, to form terms. The theory of uninterpreted functions is also sometimes called the free theory, because it is freely generated, and thus a free object, or the empty theory, being the theory having an empty set of sentences (in analogy to an initial algebra). Theories with a non-empty set of equations are known as equational theories.
Sentence (mathematical logic)In mathematical logic, a sentence (or closed formula) of a predicate logic is a Boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: as the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.
Identité (mathématiques)En mathématiques, le mot « identité » est employé dans plusieurs sens : il peut par exemple désigner un objet bien défini jouant un rôle particulier dans une famille d'objets (on parle ainsi de la fonction identité parmi les fonctions, de l'élément identité dans un groupe, de la matrice identité parmi les matrices, etc.). Cet article est consacré à un autre sens : une identité est une égalité entre deux expressions qui est vraie quelles que soient les valeurs des différentes variables employées ; par abus de langage, on baptise parfois aussi « identité » une égalité entre des termes constants, qu'on considère comme fondamentale ou surprenante.