Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Programmation dynamiqueEn informatique, la programmation dynamique est une méthode algorithmique pour résoudre des problèmes d'optimisation. Le concept a été introduit au début des années 1950 par Richard Bellman. À l'époque, le terme « programmation » signifie planification et ordonnancement. La programmation dynamique consiste à résoudre un problème en le décomposant en sous-problèmes, puis à résoudre les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.
Direction (automobile)La direction d'une automobile, ou d'un véhicule routier en général, est l'ensemble des organes qui permet de modifier l'orientation de sa trajectoire et donc de prendre des virages. Dans un véhicule à roues, le conducteur fait varier l'angle de dérive (angle entre le plan de roue et la trajectoire de la roue) des roues directrices (ou de la roue directrice) en agissant sur le volant (ou le guidon). L'effort ainsi créé entre la route et la bande de roulement fait tourner le véhicule.
Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
Convergence (géologie)A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Volant directionnelvignette|droite|Volant d'une voiture équipé d'un coussin gonflable de sécurité, airbag, et d'un avertisseur sonore mais sans bouton vignette|droite|Volant d'un véhicule équipé d'un dispositif de coussin gonflable, d'un avertisseur sonore et de boutons de commandes/consignes audio et vitesse Dans une automobile, le volant est la pièce mécanique permettant au conducteur de choisir la direction du véhicule. Le volant fait donc partie du mécanisme de direction du véhicule.
Notation de Leibnizvignette|Portrait de Gottfried Wilhelm Leibniz En analyse, la notation de Leibniz, nommée en l'honneur de Gottfried Wilhelm Leibniz, consiste en l'usage des notations « d droit » (d) suivies d'une quantité x pour représenter une variation infinitésimale de x, de même que « delta » (Δ) sert à représenter une variation finie. Par extension, c'est une notation couramment utilisée pour écrire les dérivées. En physique, cette notation est interprétée comme une modification infinitésimale (de position, de vitesse.