Résumé
In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small (or infinitesimal) increments of x and y, respectively, just as Δx and Δy represent finite increments of x and y, respectively. Consider y as a function of a variable x, or y = f(x). If this is the case, then the derivative of y with respect to x, which later came to be viewed as the limit was, according to Leibniz, the quotient of an infinitesimal increment of y by an infinitesimal increment of x, or where the right hand side is Joseph-Louis Lagrange's notation for the derivative of f at x. The infinitesimal increments are called . Related to this is the integral in which the infinitesimal increments are summed (e.g. to compute lengths, areas and volumes as sums of tiny pieces), for which Leibniz also supplied a closely related notation involving the same differentials, a notation whose efficiency proved decisive in the development of continental European mathematics. Leibniz's concept of infinitesimals, long considered to be too imprecise to be used as a foundation of calculus, was eventually replaced by rigorous concepts developed by Weierstrass and others in the 19th century. Consequently, Leibniz's quotient notation was re-interpreted to stand for the limit of the modern definition. However, in many instances, the symbol did seem to act as an actual quotient would and its usefulness kept it popular even in the face of several competing notations. Several different formalisms were developed in the 20th century that can give rigorous meaning to notions of infinitesimals and infinitesimal displacements, including nonstandard analysis, tangent space, O notation and others. The derivatives and integrals of calculus can be packaged into the modern theory of differential forms, in which the derivative is genuinely a ratio of two differentials, and the integral likewise behaves in exact accordance with Leibniz notation.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.